Zye presents
Korean SAT math translated.
Select Exam About

2025  College Scholastic Ability Test

Mathematics

Select Exam
What is the value of \(\sqrt[3]{5} \times 25^{\,\begin{array}{c}1 \\\hline 3\end{array}}\)? [2 points]
  1. \(1\)
  2. \(2\)
  3. \(3\)
  4. \(4\)
  5. \(5\)
Let \(f(x)=x^3 - 8x + 7\). What is the value of \(\displaystyle\lim_{h\;\!\to\;\!0} \dfrac{f(2+h) - f(2)}{h}\)? [2 points]
  1. \(1\)
  2. \(2\)
  3. \(3\)
  4. \(4\)
  5. \(5\)
About
Let \(\{a_n\}\) be a geometric progression whose initial term and common ratio are both \(k\), a positive number. Given that
\(\dfrac{a_4}{a_2} + \dfrac{a_2}{a_1} = 30\),
what is the value of \(k\)? [3 points]
  1. \(1\)
  2. \(2\)
  3. \(3\)
  4. \(4\)
  5. \(5\)
The function
\( f(x) = \begin{cases} 5x+a & \; (x < -2)\\ \\ x^2-a & \; (x \geq -2) \end{cases} \)
is continuous on the set of all real numbers. What is the value of the constant \(a\)? [3 points]
  1. \(6\)
  2. \(7\)
  3. \(8\)
  4. \(9\)
  5. \(10\)