Let \(N\) be the number of all cases of moving from point \((0,0)\)
to point \((4,3)\) by performing jumps repeatedly. Let \(k\) be the
smallest value that the random variable \(X\) can have. Then
\(k=\fbox{\(\;(\alpha)\;\)}\), and the greatest value that can be
taken is \(k+3\).
\(\mathrm{P}(X=k)=\dfrac{1}{N}\times \dfrac{4!}{3!}=\dfrac{4}{N}\)
\(\mathrm{P}(X=k+1)=\dfrac{1}{N}\times
\dfrac{5!}{2!2!}=\dfrac{30}{N}\)
\(\mathrm{P}(X=k+2)=\dfrac{1}{N}\times \fbox{\(\;(\beta)\;\)}\)
\(\mathrm{P}(X=k+3)=\dfrac{1}{N}\times
\dfrac{7!}{3!4!}=\dfrac{35}{N}\)
and
\(\displaystyle\sum_{i\;\!=\;\!k}^{k+3}\mathrm{P}(X=i)=1\),
therefore \(N=\fbox{\(\;(\gamma)\;\)}\).
Therefore the mean of the random variable \(X\) is
\(\mathrm{E}(X)=\displaystyle\sum_{i\;\!=\;\!k}^{k+3}\{i\times
\mathrm{P}(X=i)\}=\dfrac{257}{43}\).
Let \(a\), \(b\) and \(c\) be the correct numbers for \((\alpha),
(\beta)\) and \((\gamma)\) respectively. What is the value of
\(a+b+c\)?