For real numbers \(t\), let \(f(x)\) be
\(f(x)=\begin{cases} 1-|x-t| & (|x-t|\leq1)\\\\ \qquad 0 &
(|x-t|>1). \end{cases}\)
For some odd number \(k\), the function
\(g(t)=\displaystyle\int_k^{k+8}\!f(x)\cos(\pi x)dx\)
satisfies the following.
Let us list all \(\alpha\) for which the function \(g(t)\) has a
local minimum at \(t=\alpha\) and \(g(\alpha)<0\).
Let \(\alpha_1,\alpha_2,\cdots,\alpha_m\) (\(m\) is an integer) be
this list in ascending order. Then
\(\displaystyle\sum_{i\;\!=\;\!1}^m\alpha_i=45\).
Compute \(k-\pi^2\displaystyle\sum_{i\;\!=\;\!1}^mg(\alpha_i)\).
[4 points]