Let \(Y=10X-2.21\). The probability distribution of the random
variable \(Y\) is as follows.
| \(Y\) |
\(-1\) |
\(0\) |
\(1\) |
Total |
| \(\mathrm{P}(Y=y)\) |
\(a\) |
\(b\) |
\(\dfrac{2}{3}\) |
\(1\) |
Since \(\:\mathrm{E}(Y)=10\,\mathrm{E}(X)-2.21=0.5\),
\(a=\fbox{\(\;(\alpha)\;\)}\,,\;b=\fbox{\(\;(\beta)\;\)}\,,\)
and \(\mathrm{V}(Y)=\dfrac{7}{12}\).
Since
\(Y=10X-2.21,\;\mathrm{V}(Y)=\fbox{\(\;(\gamma)\;\)}\times\mathrm{V}(X)\).
Therefore
\(\mathrm{V}(X)=\dfrac{1}{\fbox{\(\;(\gamma)\;\)}}\times\dfrac{7}{12}\).
Let \(p\), \(q\) and \(r\) be the correct numbers for \((\alpha),
(\beta)\) and \((\gamma)\) respectively. What is the value of \(pqr\)?