Let \(\{a_n\}\) be a geometric progression such that
\(\displaystyle\sum_{n\;\!=\;\!1}^{\infty}\left(\left|a_n\right| +
a_n \right) = \dfrac{40}{3}\) and
\(\displaystyle\sum_{n\;\!=\;\!1}^{\infty}\left(\left|a_n\right| -
a_n \right) = \dfrac{20}{3}\).
Compute the sum of all positive integers \(m\) for which
\(\displaystyle\lim_{n\;\!\to\;\!\infty} \sum_{k\;\!=\;\!1}^{2n}
\left( (-1)^{\begin{array}{c}k\,(k+1) \\\hline 2\end{array}} \times
a_{m\,+\,k} \right) > \dfrac{1}{700}\)
is satisfied.
[4 points]